
РЕНТГЕНОФЛУОРЕСЦЕНТНОЕ ОПРЕДЕЛЕНИЕ ВАЛЕНТНОГО СОСТОЯНИЯ ЖЕЛЕЗА В ИЗВЕРЖЕННЫХ ГОРНЫХ ПОРОД УЛЬТРАОСНОВНОГО И ОСНОВНОГО СОСТАВА

В. М. Чубаров, ИГХ СО РАН

Рис. 1 Рентгеновский спектр образца гематит

иния / реход	Энергия (кэВ) / длина волны (Å)	Монохроматор / коллиматор	Детектор	Напряжение (к ток (мА) рентгеновско трубки
^{(β₅} / M ₄ ,M ₅	7.108 / 1.742	LiF (220) / 0.23°	SD	50 / 60
β _{1,3} / M ₂ ,M ₃	7.058/ 1.755	LiF (220)/ 0.23°	SD	50 / 60

Рис. 2 Зависимость валентного состояния железа (n) от отношения $IK\beta_5/IK\beta_{1,3}$ в образцах минералов на

ороды	CO	Fe ₂ O ₃ tot, %	FeO, %	Rc	Тип породы	CO	Fe ₂ O ₃ tot, %	FeO, %
альт	JB-1	9.10	5.92	0.65		JGB-1	15.16	9.24
	JB-2	14.34	10.09	0.70		MGR-N	10.99	4.57
					Габбро	MGR-T	4.22	2.00
	JB-3	11.88	7.90	0.66		СГД-1А	11.66	6.86
	BE-N	12.84	6.74	0.52		СГД-2	11.33	6.23
	MBL-1	9.85	6.15	0.62	Меймечит	ДВМ-1	12.55	6.80
					Перидотит	JP-1	8.34	5.73
	BIR-1A	11.26	8.38	0.74		GAS	8.27	0.28
	WG-1	11.31	8.33	0.74	Серпентинт	SW	7.4	1.62
	BNV -1	10.35	7.64	0.74	Трапп	CT-1	15.22	10.26
ерит	DNC 1	0.02	7 20	0.74		CT-2	14.62	10.33
	DNC-1	9.93	7.39	0.74	Анортозит	AN-G	3.36	2.24
	OU-5	14.60	8.74	0.60	Диабаз	W-2	10.74	8.31
нит	DTS-1	8.73	6.98	0.80	Дунит	СДУ-1	8.91	5.54

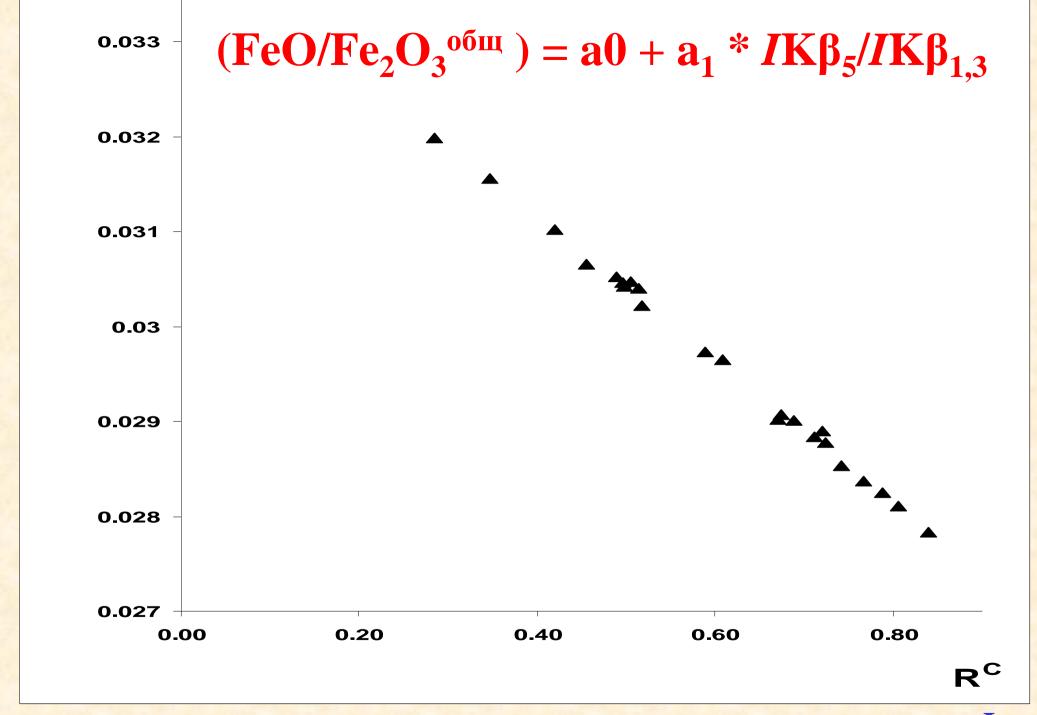


Рис. З Зависимость отношения интенсивностей R^I от

тилиения РС пля стандантных обназиль гонных понод

целения вео с аттестованными значениями в со

женных горных пород основного и ультраосновного соста

ец	Тип породы	FeO,	FeO ^{XRF} ,	ΔFeO , отн %	Образец	Тип породы	FeO,	FeO ^{XRF} ,	ΔF 0TH
1	Диабаз	8.50	7.91	-7.0	MBL-D		8.15	8.62	5.
2	Базальт	7.71	7.53	-2.4	IIID 1	Базальт		10.02	
3		9.05	9.54	5.5	HTB-1		7	10.93	6.
5		9.05	9.34	3.3	ГВ	Габбро	3.98	3.53	-11
4	Габбро	5.43	4.92	-9.4		NKT-1 нефелинит			
5		14.98	14.90	-0.5	NKT-1		7.37	7.35	-0
					№1	Трахи-	7.36	7.41	0.
6	Анортозит	4.66	4.94	6.0	№ 2	базальт	7.18	7.61	6.
1	Перидотит	8.83	8.96	1.4	№3		7.54	7.58	0.
2	Дунит	3.69	3.51	-5.0	№4		4.31	4.00	-7
3	Гонблендит	0.74	0.00		№5		1.44	1.77	23
		9.72	9.03	-7.1	№6	Оливин-	4.49	4.41	-1
4	Кимберлит	2.24	2.25	0.5		базальт			
	1		_,_,		№7	Vasalibi	6.68	6.71	0.
					№8		6.39	6.42	0.

NoQ

3 16

3 03

Cahhro

Выводы

- Разработана методика рентгенофлуоресцентного определения валентного состояния железа в изверженных горных породах основного и ультраосновного состава
- Точность разработанной методики сопоставима с точностью титриметрического анализа
- Для увеличения точности необходимо разделение исследуемых объектов по типу породы
- Для разработки методики для пород среднего и кислого состава необходимы дополнительные исследования